
Online learning dynamics of multilayer perceptrons with unidentifiable parameters

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 11753

(http://iopscience.iop.org/0305-4470/36/47/004)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/47
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 11753–11764 PII: S0305-4470(03)63698-X

Online learning dynamics of multilayer perceptrons
with unidentifiable parameters

Hyeyoung Park1, Masato Inoue1,2,3 and Masato Okada1,3

1 Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa,
Wako, Saitama 351-0198, Japan
2 Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine,
Kyoto University, Kyoto 606-8507, Japan
3 ‘Intelligent Cooperation and Control’, PRESTO, JST, c/o RIKEN BSI, Saitama 351-0198,
Japan

E-mail: hypark@brain.riken.go.jp, minoue@brain.riken.go.jp and okada@brain.riken.go.jp

Received 20 May 2003
Published 12 November 2003
Online at stacks.iop.org/JPhysA/36/11753

Abstract
In the over-realizable learning scenario of multilayer perceptrons, in which
the student network has a larger number of hidden units than the true or
optimal network, some of the weight parameters are unidentifiable. In this
case, the teacher network consists of a union of optimal subspaces included
in the parameter space. The optimal subspaces, which lead to singularities,
are known to affect the estimation performance of neural networks. Using
statistical mechanics, we investigate the online learning dynamics of two-layer
neural networks in the over-realizable scenario with unidentifiable parameters.
We show that the convergence speed strongly depends on the initial parameter
conditions. We also show that there is a quasi-plateau around the optimal
subspace, which differs from the well-known plateaus caused by permutation
symmetry. In addition, we discuss the property of the final learning state,
relating this to the singular structures.

PACS number: 05.20.−y

1. Introduction

When we design a neural network for approximating a true function that generates observed
samples, we need to choose an appropriate network size. Since the optimal network size is
unknown, a sufficiently large network is usually used as the first stage. For this reason, the
learning network in practical applications, which we call a student network, is larger than the
optimal or true network. This is called an over-realizable scenario. When we use a multilayer
perceptron, an over-realizable scenario means the case that the number of hidden nodes in the
student network exceeds the optimal number of hidden nodes.
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The over-realizable learning scenario of multilayer perceptrons connotes a severe problem,
which is called a problem of unidentifiability or a singularity problem [1]. In the over-
realizable case, the optimal network is represented not by a unique point but by a union of
subspaces in the parameter space of the student network, and thus the optimal parameter is
unidentifiable. In addition, all the points in the optimal subspaces are singular, at which the
Fisher information matrix degenerates. For this reason, the classical statistical theory cannot
be applied for analysing the learning behaviour of multilayer perceptrons in the over-realizable
scenario. Since the optimal estimator is not a point, the asymptotic normality about an optimal
estimator is destroyed. Since the Fisher information matrix degenerates at the optimum,
the Cramér–Rao paradigm cannot be applied to analyse the estimation performance of the
network.

Recently, the importance of this singularity problem has become apparent, and a number
of studies on building a new statistical theory for nonregular (singular) models have been
performed. Hagiwara et al [2] have showed that the classical model selection criterion,
the Akaike information criterion (AIC), does not work on multilayer perceptrons, and
suggested that this is due to the singularity of the optimal point. Hagiwara [3] used simple
models to show that the least square error of the estimator does not obey the conventional
asymptotic rule. Fukumizu [4] gave a general analysis of the maximum likelihood estimators
in singular statistical models that include multilayer perceptrons. Watanabe [5] applied
algebraic geometry to elucidate the behaviour of the Bayesian predictive estimator of multilayer
perceptrons in the over-realizable scenario. These studies have shown that the properties of
networks in the singular (over-realizable) case are strictly different from those in the regular
(realizable and unrealizable) case.

Until now, however, most of the work related to the singularity problem has been done
through asymptotic statistical analysis of the estimators. Although theoretical analysis of
network models is indispensable, it is also important to investigate the learning behaviour of
network models. In practical applications, the finally obtained parameters often depend on the
learning trajectories of the learning network. In the over-realizable scenario, some parameters
are unidentifiable, and the optimal destination of learning dynamics is not one point, but some
subspaces in the parameter space. Therefore, the dynamics has much more freedom than in the
realizable and unrealizable scenarios, and clarifying the network behaviour is an interesting
objective.

In this paper, we investigate the dynamics of the online learning of multilayer perceptrons
in an over-realizable scenario with unidentifiable optimal parameters. To do this, we take
the statistical mechanical approach [6, 7], which can be used to analyse the dynamics
of gradient descent learning algorithms at the large limit of the input dimension. Using
such a framework, Saad and Solla [7] have shown that the plateaus in the learning of soft
committee machines are closely related to the singularity in the parameter space. Inoue
et al [8] also analysed the relationship between the length of plateaus and the position of
the optimal point. Especially, Biehl and Schwarze [9] and Biehl et al [10] discussed the
dynamics of the over-realizable scenario. However, these studies were done using soft
committee machines, which always have a unique optimal point in the parameter space
and are not involved in the problem of unidentifiability. Riegler and Biehl [6] investigated
the dynamics of general multilayer perceptrons, but they mainly investigated the realizable
case, in which the optimal point is uniquely determined. Even though many interesting
dynamical properties of multilayer perceptrons have been investigated through these studies,
the dynamics related to the intrinsic singularity in the parameter space has not been dealt
with so far. The work reported here is the first step towards solving the challenging
problem.



Dynamics of multilayer perceptrons with unidentifiable parameters 11755

Figure 1. Architecture of the teacher and student networks.

2. Multilayer perceptrons with unidentifiable parameters

The multilayer perceptron discussed in this paper is defined as

ζ ′ = fJ ,w(ξ) =
K∑

i=1

wig(J i · ξ). (1)

Here, ξ ∈ �N denotes the input vector; J i ∈ �N and wi ∈ � denote the weight parameters
connected to the ith hidden unit; N denotes the number of input nodes and g(·) denotes an
activation function. We assumed that the true function generating the training data (ξ, ζ ) can
also be described by a teacher multilayer perceptron with the same architecture, such as

ζ = fB ,v(ξ) =
M∑

n=1

vng(Bn · ξ) (2)

where Bn and vn are the true (optimal) parameters to be estimated through learning. Figure 1
shows the architecture of the networks.

When the number of hidden nodes of the student network exceeds that of the true network,
K > M,K − M hidden units in the student network are redundant, and some parameters
related to the redundant units become unidentifiable. As a simple example, let us consider the
case of K = 2,M = 1. The student network can realize the teacher network when one of the
following conditions is satisfied:

Condition 1 J1 = J2 = B w1 + w2 = v

Condition 2

{
J1 = B w1 = v w2 = 0

J2 = B w2 = v w1 = 0.

In the case of condition 1, parameters w1 and w2 are unidentifiable under the restriction of
w1 + w2 = v. In the case of condition 2, parameter J1 or J2 is unidentifiable. Note here that
this kind of unidentifiability does not exist in soft committee machines. Because w1 and w2 are
set to a fixed value in soft committee machines, the optimal solution is uniquely determined
as J1 = B and J2 = 0. (Here, we ignore the trivial permutation, J1 = 0 and J2 = B.)

The parameters satisfying the optimal conditions constitute a set of optimal subspaces
in the parameter space. Figure 2 shows a part of the optimal subspaces in the parameter



11756 H Park et al

Figure 2. Optimal subspace in parameter space (w1, w2).

space (w1, w2). Condition 1 corresponds to the thick solid line in the figure, and condition 2
corresponds to the endpoints of the line as expressed by the two dots on the axes of w1

and w2. This kind of optimal subspace does not exist in the parameter space of soft
committee machines, even though it affects learning dynamics seriously as we shall discuss in
section 4.

Since the optimal parameters form subspaces, the possible goal of the learning trajectory
is not unique, but can be any point within the optimal subspaces. In statistical analysis
[2–5, 11], all the points in the subspaces are considered to represent the same conditional
probability distribution, and the differences among them do not matter. However, condition
1 and condition 2 have intrinsically different singular structures in the parameter space, and
thus influence the estimation properties differently. Therefore, when we take the dynamics
into account, it is interesting to check which type of optimal condition is finally satisfied in the
learning. In addition, since optimal condition 1 is closely related to the permutation symmetry
that causes plateaus in the learning of soft committee machines, it is also interesting to see
how the subspaces of optimal condition 1 influence the learning dynamics. In this paper,
we discuss our investigation of the dynamical behaviour under an online learning scheme to
clarify the properties of the learning trajectories.

3. Analysis of online learning dynamics

3.1. Gradient descent learning

We investigated the dynamics of standard gradient descent learning, which is also called
backpropagation learning. At each learning step, new training data (ξ, ζ ) are generated from
the teacher network. The parameter is updated to decrease the squared error,

eJ ,w(ξ, ζ ) = 1

2
[fB ,v(ξ) − fJ ,w(ξ)]2 (3)

= 1

2

[
K∑

i=1

wig(xi) −
M∑

n=1

vng(yn)

]2

(4)

where

xi = J i · ξ yn = Bn · ξ.
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When we use the gradient descent learning method, the update term is given by

�J i = − η

N

∂eJ ,w

∂J i

= − η

N
δiξ (5)

�wi = − η

N

deJ ,w

dwi

= − η

N
g(xi)


 K∑

j=1

wjg(xj ) −
M∑

n=1

vng(yn)


 (6)

where

δi = wig
′(xi)


 K∑

j=1

wjg(xj ) −
M∑

n=1

vng(yn)




and η is the learning rate. The estimation accuracy of the network is evaluated using the
generalization error, which is defined as

Egen =
〈

1

2
{fB ,w(ξ) − fJ ,w(ξ)}2

〉
{ξ}

(7)

where 〈·〉{ξ} denotes the expectation with respect to the input random value ξ.

3.2. Statistical mechanics for analysing dynamics

To see the dynamics of learning, we need to trace the evolution of the weight parameters J i and
wi . This is almost impossible when the input dimension N is large. In addition, the randomness
of data makes the analysis of online learning dynamics difficult. To solve these difficulties,
we use the statistical mechanical framework, and analyse the dynamics at the thermodynamic
limit; i.e., the limit of N → ∞. Within the framework, new order parameters are defined
and used to describe the generalization error. Saad and Solla [7], Biehl and Schwarze [9] and
Biehl et al [10] applied such a method to analyse the dynamics of gradient learning in soft
committee machines and other simple two-layer networks. Riegler and Biehl [6] extended it
to multilayer perceptrons. In this section, we briefly review the analysing method including
the order parameters and their motion equations for the multilayer perceptron (1), which was
derived in [6]. (For details, one can also refer to [12].)

To describe the learning dynamics, we can use the order parameters representing the
correlations between weight vectors J i and Bn, instead of using the N-dimensional weight
vector. The order parameters are defined as

Qij = J i ·J j i, j = 1, . . . , K (8)

Rin = J i ·Bn i = 1, . . . , K n = 1, . . . ,M. (9)

These parameters are updated through learning of the weight vectors, J i (i = 1, . . . , K). We
also have similar values, Tnm = Bn · Bm (n,m = 1, . . . ,M) which are determined by the
teacher network and are fixed during learning. In the case of soft committee machines, these
order parameters are sufficient to describe the learning dynamics and the generalization error.
In the case of multilayer perceptrons, we need one more set of parameters wi (i = 1, . . . , K),
and fixed variables vn (n = 1, . . . , M).

Under the assumption that all elements of the input vector are independent and identically
different random variables with zero mean and unit variance, the generalization error at the
thermodynamic limit can be determined using parameters Rin, Qij and wi , and the fixed values
Ti,j and vi . Furthermore, if we define the activation function g as g(u) = erf(u/

√
2), we can

get the explicit form of the generalization error of (7);
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Egen = 1

π


 K∑

i,j

wiwj arcsin

(
Qij√

1 + Qii

√
1 + Qjj

)
+

M∑
m,n

vmvn arcsin

(
Tmn√

1 + Tmm

√
1 + Tnn

)

− 2
K∑
i

M∑
n

wivn arcsin

(
Rin√

1 + Qii

√
1 + Tnn

)]
. (10)

As shown in (10), the time evolution of the generalization error can be obtained through
the evolution of order parameters Rin and Qij , and parameter wi . From the learning rule of
J i in (5) and the definition of the order parameters (8), (9), we can obtain

�Rin = �J i ·Bn = − η

N
δiyn (11)

�Qij = �J i ·J j + �J j · J i + �J i · �J j (12)

= − η

N
(δixj + δjxi) +

η2

N2
δiδj (ξ · ξ). (13)

At the thermodynamic limit N → ∞, we introduce a new time variable α (�α = 1/N),
which can be interpreted as a continuous time variable. The motion equations of the order
parameters are then obtained by taking the expectation of all terms in (11), (13) and (6) with
respect to input ξ:

dRin

dα
= ηwi


 M∑

m=1

vm〈g′(xi)g(ym)yn〉 −
K∑

j=1

wj 〈g′(xi)g(xj )yn〉

 (14)

dQij

dα
= ηwi

[
M∑

m=1

vm〈g′(xi)g(ym)xj 〉 −
K∑

k=1

wk〈g′(xi)g(xk)xj 〉
]

+ ηwj

[
M∑

m=1

vm〈g′(xj )g(ym)xi〉 −
K∑

k=1

wk〈g′(xj )g(xk)xi〉
]

+ η2wiwj

[
M∑

n=1

M∑
m=1

vnvm〈g′(xi)g
′(xj )g(yn)g(ym)〉

+
K∑

k=1

K∑
l=1

wkwl〈g′(xi)g
′(xj )g(xk)g(xl)〉

− 2
K∑

k=1

M∑
m=1

wkvm〈g′(xi)g
′(xj )g(xk)g(ym)〉

]
(15)

dwi

dα
= η


 M∑

m=1

vm〈g(xi)(ym)〉 −
K∑

j=1

wj 〈g(xi)g(xj )〉

 . (16)

The terms 〈g′(z1)g(z2)z3〉, 〈g′(z1)g
′(z2)g(z3)g(z4)〉 and 〈g(z1)g(z2)〉 denote the expectation

with respect to the input ξ. Here, we assume that ξ has zero mean and unit variance. Then,
if we take the thermodynamic limits, the random variables zi are subject to the Gaussian
distribution with zero mean, and these expectations can be determined from their variance–
covariance matrix. In the case of g(u) = erf(u/

√
2) especially, these expectations can be

analytically calculated, and the motion equations can be given in a compact form using
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Figure 3. Time evolutions of generalization errors for various initial states.

parameters Rin,Qij and wi , and the fixed values Tnm and vn. (The explicit forms of the
expectations are given in [12].)

These motion equations and the generalization error are general in the number of K and M
so that they can be applied to the analysis of the dynamics under the over-realizable scenario.
However, the previous studies mainly investigated the realizable case with no unidentifiable
parameter. In this paper, we discuss the dynamics of the multilayer perceptrons under the
over-realizable scenario, in which the optimal networks constitute subspaces in the parameter
space of the student networks.

4. Results

4.1. Dynamics at the thermodynamic limit

We investigated a simple over-realizable scenario, K = 2,M = 1. To describe the learning
dynamics, we need five order parameters (R11, R21,Q11,Q22 and Q12 = Q21), two hidden-
output weight parameters (w1, w2) and the fixed values related to the teacher network (T , v).
For the teacher network, we set T = 1 and v = 1. The student network then realizes the
teacher network when one of the following conditions is satisfied;

(1) R11 = R21 = Q11 = Q22 = Q12 = 1 w1 + w2 = 1 (17)

(2.1) R11 = Q11 = 1 w1 = 1 w2 = 0 Q12 = R21 (18)

(2.2) R21 = Q22 = 1 w1 = 0 w2 = 1 Q12 = R11. (19)

The initial state for each order parameter was set as[
Q11 Q12

Q12 Q22

]
=

[
1 0
0 1

] [
R11

R21

]
=

[
2 × 10−2

10−2

]
. (20)

For the parameters (w1, w2), we tried various initial states: (w1, w2) = (0.1, 0.1 − ε),

ε = 0, 0.01, 0.02, 0.03, 0.05, 0.09.
The evolution of the generalization error for each initial value of ε is shown in figure 3.

From the figure, we can see that the convergence speeds were strongly dependent on the initial
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Figure 4. Parameter trajectories: (a) within the space of (R11, R21) and (b) within the space of
(w1, w2).

relation between w1 and w2. When the difference between w1 and w2 (i.e., ε) was larger than
0.03, the learning converged rapidly. However, as ε decreased, the convergence speeds slowed
down remarkably, and plateau-like phenomena appeared.

To find the cause of the slow convergence, we investigated the learning trajectories of
order parameters (R11, R21) and parameters (w1, w2). Figure 4(a) shows the trajectories
of (R11, R21) with different values of ε. The two dashed straight lines show the optimal
subspaces. The crossing point of the two lines (R11 = R21 = 1) corresponds to optimal
condition 1 defined in (17), and the other parts of the lines correspond to optimal condition 2
defined in (18) and (19). For a small ε, the parameters clearly approached optimal condition 1.
From this, we conjecture that optimal condition 1 is related to the convergence speed.
Figure 4(b), which shows the trajectories of (w1, w2), also supports our conjecture. In
the space of (w1, w2), optimal condition 1 makes a line (w1 + w2 = 1), and the end points
of the line in the figure ((1,0) and (0,1)) correspond to optimal condition 2. As shown in
the figures, when ε = 0.03 (and also when ε > 0.03), the learning rapidly converged to the
optimal subspace of condition 2. When ε < 0.03, slow dynamics was observed around the
subspace w1 + w2 = 1, resulting in the slow convergence.

From these results, we can say that there is a quasi-plateau around the subspace satisfying
optimal condition 1, at which the convergence speed evidently slows down. Additionally,
note that the quasi-plateau differs from the plateau caused by permutation symmetry that was
reported in [7] with regard to two points. First, the quasi-plateau occurs around the minimum,
whereas the conventional plateau occurs around the saddle point. Second, the quasi-plateau
is observed under specific initial conditions, whereas the conventional plateau is a typical
phenomenon in the learning of neural networks. We should also remark that the optimal
subspace causing the quasi-plateau does not exist in the parameter space of soft committee
machines. This is the reason why the quasi-plateau has not been observed in previous works
on the over-realizable scenario of soft committee machines [9, 10].

However, it is important to know the point of convergence of the learning dynamics,
since the two different optimal subspaces have intrinsically different singular structures. From
figure 4(b), we can see that the parameters moved along the subspace of optimal condition 1.
However, it is difficult to decide from the trajectories whether the learning was slowly moving
towards optimal condition 2 or stopping at optimal condition 1. Regarding the convergence
point, one interesting point should be noted. In figure 3, within the range of sufficiently large
value of ε (ε > 0.03), the convergence of learning slowed down as the value of ε decreased.
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Figure 5. Time evolutions of w1 − w2 and ‖J1 − J2‖2.

An interesting thing is that there was a turning point around ε = 0.02, at which the convergence
again sped up.

To find what occurs around the turning point, we traced the motion equations with two
different initial values of ε around 0.02: 0.0225 and 0.0175. Figure 5(a) shows the evolution
of the difference between w1 and w2, and figure 5(b) shows the evolution of the sizes of
difference vector J1 − J2. For ε = 0.0225, the value of w1 − w2 finally converged to 1, and
the value of ‖J1 − J2‖2 remained around 0.01; this implies optimal condition 2. In contrast,
for ε = 0.0175, the value of w1 − w2 remained near 0.7, and the value of ‖J1 − J2‖2 linearly
decreased to zero; this implies optimal condition 1. From these results, we can say that there
is a critical value of ε around 0.02, at which the terminal condition of learning changes.

4.2. Numerical simulations with finite input dimension

We confirmed the validity of our theoretical results at the thermodynamic limits through
numerical simulations of online learning with finite input dimensions. In the simulations, we
used (w1, w2) = (0.1, 0.08) as the initial values (i.e., ε = 0.02). To set the value of B and
the initial values of J1 and J2, we randomly and independently choose each element of the
vectors subject to the normal distribution ℵ(0, 1/N), and slightly changed the values so as to
satisfy the initial conditions for R and Q defined in (20).

Figure 6 shows the simulation results for various input dimensions: 10, 102, 103 and
104. The dashed curve in each figure shows the evolution of the generalization error obtained
from the motion equations at the thermodynamic limit. Other curves were obtained from
independent runs of online learning with randomly selected input ξ ∼ ℵ(0, I). Even though
the curves from the online learning were scattered when the input dimension was small,
we found that they approached close to the curve of the thermodynamic limit as N increased.
The scatter of the online learning curves is an interesting phenomenon which was due to
the large degree of freedom of the optimal points and the existence of the quasi-plateau
in the neighbourhood of some optimal subspaces. Another interesting point arising from the
simulations was that the theoretical curve was not located near the median of the simulation
curves, but was located at the top. In the case of small N, we can speculate that the stochastic
properties of online learning can cause the learning to avoid the quasi-plateau.
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0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

w
1

ε = 0.0
ε = 0.01
ε = 0.02
ε = 0.03

w
2

R
21

R
11

Figure 7. Numerical simulations for various initial states (ε).

Figure 7 shows the trajectories of parameters obtained from the numerical simulations
with input dimension N = 104 for various initial values of ε. From the results, we can see
that the trajectories at the thermodynamic limits in figure 4 fit well with the trajectories in the
case of a finite input dimension.
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5. Conclusions and discussions

Even though the singularity problem of multilayer perceptrons has been actively studied
in recent years, the influence of singularity on learning dynamics has not been thoroughly
discussed. By using a statistical mechanical framework, we investigated the convergence
properties of learning dynamics when a teacher network is on the singularities in the parameter
space of a student network. From the analysis, we first showed that the convergence speed was
strongly dependent on an initial condition as well as that a quasi-plateau existed. In addition,
we discussed the terminal point of learning. From the simulations, we showed that there is a
critical initial state at which the terminal condition of learning changed. We also showed that
learning converges to optimal condition 2, unless the difference between two hidden-output
weight parameters is sufficiently small.

In addition, we checked whether the results obtained at the thermodynamic limit with
specific initial conditions were still valid in practical situations where typical initial conditions
held. To do this, we investigated the learning behaviour through numerical simulations. We
conducted online learning for a student network with N = 100. For the parameter of the
teacher network, we first randomly selected each element of B subject to ℵ(0, 1/N), and
then normalized B so as to satisfy T = 1. The value of v was set to 1. Training data were
generated from the teacher network with input ξ subject to a standard multivariate normal
distribution. We conducted 100 trials of the learning process with different initial values of J
and w. For the initial values of J i (i = 1, 2), we randomly selected each element of the vector
J i subject to the normal distribution ℵ(0, 1/N). The initial value of wi was also randomly
selected subject to the uniform distribution in (−0.5, 0.5).

For the evolution of the generalization errors in figure 8(a), we confirmed the dependence
of the convergence speed on the initial conditions. Figure 8(b) shows the evolution of
||w1| − |w2|| for 100 trials with different initial values of the weight parameters. From
the figure, we can see that ||w1| − |w2|| mainly converged to 1 where the optimal subspace
of condition 2 was satisfied. This result corresponds to the simulation results at the
thermodynamic limit under specific initial conditions. From these results, we can say that the
two observations—the large dispersion in convergence speed and the tendency to converge to
the optimal condition 2—are still valid under the usual initial conditions. In a practical sense,
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the convergence to optimal condition 2 has an important meaning, because it simplifies the
structure optimization task by automatically pruning some unnecessary hidden nodes.

The singular structure of the parameter space of multilayer perceptrons greatly influences
the learning dynamics in various situations, and this has not been clarified thoroughly. This
paper is a preliminary step towards a better understanding of the rich dynamics related to
singularities.
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